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Introduction
The liver is composed of many small functional units known as liver 
lobules. Hepatocytes, bile ductular epithelial cells, hepatic stellate 
cells (HSCs), Kupffer cells, and sinusoidal endothelial cells reside 
in the liver lobules and participate in homeostasis. Hepatocytes are 
the major functional cells, and they are stacked one by one in hepatic 
cords radiating from the central veins to the portal triad. Segrega-
tion of hepatocytes into different metabolic zones with functions 
adapted to oxygen and nutrients occurs according to their concentra-
tion nutrient gradients from high to low along the blood flow. Due 
to endogenous or exogenous exposure during substance exchange 
and metabolism, toxic intermediates can accumulate in the liver, 
which filters the blood by removing potentially harmful substances 
using detoxification mechanisms. Failure to remove these toxins can 
cause hepatotoxicity. Hepatocyte damage can occur by diverse he-
patic insults ranging from viral infections to metabolic syndromes, 

obesity, drug toxicity, and alcohol abuse. Chronic incidence of these 
pathological conditions recruits inflammatory cells and activates 
nonparenchymal cells such as HSCs, leading to liver scarring, cir-
rhosis, and even liver failure. Liver cancers such as hepatocellular 
carcinoma (HCC) and cholangiocarcinoma (CCA) may eventually 
develop due to the profibrotic microenvironments, resulting in a 
life-threatening condition. Therefore, characterizing detoxification 
enzymes in the liver has therapeutic potential to reduce hepatic dam-
age and prevent liver injury and cancer development. This review 
focuses on acetaldehyde dehydrogenases (ALDHs), a group of key 
enzymes that catalyze the irreversible oxidation of various aliphatic 
and aromatic aldehydes to the corresponding carboxylic acids. The 
distribution patterns of these detoxification genes in normal adult 
livers, liver zonation, HCC, and CCA were also compared using 
publicly available databases.

ALDHs and their functions
ALDHs consist of 24 families in the eukaryotic ALDH gene su-
perfamily. Nineteen of them are found in the human genome and 
belong to the ALDH1–9, ALDH16, and ALDH18 families.1 There 
are six isotype genes in the ALDH1 family (ALDH1A1, ALDH1A2, 
ALDH1A3, ALDH1B1, ALDH1L1, and ALDH1L2). Among them, 
ALDH1A1, ALDH1A2, and ALDH1A3 encode cytosolic enzymes 
that oxidize retinal and aliphatic aldehydes. ALDH1A1 protein 
binds to retinaldehyde in great affinity and has been considered a 
major retinoid acid-metabolizing enzyme.2 Cytosolic ALDH1A1 
also plays a role in acetaldehyde oxidation and alcohol preference 
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by mediating the gamma-aminobutyric acid synthesis pathway.3 In 
the liver, ALDH1A1 has been shown to be a novel determinant of 
gluconeogenesis and lipid metabolism independent of adiposity.4 
Deletion of the mouse Aldh1a1 gene significantly attenuates he-
patic triacylglycerol synthesis by increasing adenosine monophos-
phate (AMP)-activated protein kinase alpha activity and decreas-
ing the expression of lipogenic targets of AMP-activated protein 
kinase alpha. The ALDH1 family also contains a mitochondrial 
ALDH1B1 enzyme involved in metabolizing both retinal and ac-
etaldehyde. It has a high affinity to acetaldehyde only secondary to 
ALDH2 and catalyzes various aldehyde substrates of acetaldehyde 
and derivatives of lipid peroxidation.5 ALDH1L1 and ALDH1L2 
are other members of the ALDH1 family that can metabolize 
10-formyltetrahydrofolate. They are in the mitochondria and cy-
tosol, respectively.

ALDH2 is the only member of the ALDH2 family. This mito-
chondrial enzyme is primarily responsible for the oxidization of 
the majority of hepatic acetaldehyde in vivo;6 however, ALDH1A1 
and ALDH1B1 also have a detectable affinity to acetaldehyde.7 
The ALDH3 family consists of three endoplasmic reticulum-locat-
ed enzymes (ALDH3A2, ALDH3B1, and ALDH3B2) and one cy-
tosolic enzyme (ALDH3A1) that is also partially distributed in the 
nucleus. ALDH3A1 uses aromatic and aliphatic aldehydes as sub-
strates. ALDH3A2 converts fatty aldehydes to fatty acids, while 
ALDH3B1 mainly oxidizes octanal. It has been reported that the 
ALDH3 family has a specific substrate spectrum for all members,8 
although substrates for ALDH3B2 presently remain unknown.

ALDH4A1, ALDH5A1, and ALDH6A1 are found in mito-
chondria and can metabolize glutamate-gamma-semialdehyde, 
succinate semialdehyde, and malonate semialdehyde, respec-
tively.9,10 ALDH7A1, located in the cytosol, is responsible for the 
oxidation of alpha-aminoadipic semialdehyde.11 Like ALDH7A1, 
ALDH8A1 is found in the cytosol but is involved with a cyto-
solic enzyme for retinal metabolism and the kynurenine pathway 
for tryptophan catabolism.12 Additionally, ALDH9A1 is also lo-
cated in the cytosol and metabolizes gamma-aminobutyraldehyde. 
ALDH16A1 is a transmembrane protein, but its substrate is still 
unknown. ALDH18A1 is a mitochondrial enzyme and shares simi-
lar substrates with ALDH4A1 for metabolizing glutamic gamma-
semialdehyde. Most of the ALDH gene families have the cysteine 
(PS00070) and glutamic acid (PS00687) active site, but ALD-
H18A1 encodes a bifunctional protein with a glutamate 5-kinase 
(PS00902) at the N-terminal site and a gamma-glutamyl phosphate 
reductase (PS01223) at the C-terminal site.13 Therefore, there is 
a distal evolutionary connection between ALDH18A1 and other 
ALDHs.

Pivotal roles of ALDHs also have been documented based on 
human genetic disorders. Mutations of ALDH1A2 protein at resi-
due 151 from alanine to serine (A151S) or at residue 157 from 
isoleucine to threonine (I157T) cause congenital heart disease.14 
ALDH1A3 protein with an arginine mutation at residue 89 to 
cysteine (R89C) is linked to autosomal recessive anophthalmia 
and microphthalmia, which are rare developmental eye defects oc-
curring in early fetal development.15 The ALDH1B1 mutant with 
alanine to valine at position 86 (A86V) is associated with alcohol-
induced hypersensitivity.16,17 A mutation at residue 793 (D793G) 
in ALDH1L1 protein is correlated with Hodgkin’s lymphoma.18 
The mutation at position 504 from glutamic acid to lysine (E504K) 
in ALDH2 protein is a risk factor for esophageal cancer,19,20 dia-
betic cardiomyopathy,21–23 cardiac dysfunction,24 Alzheimer’s 
disease,25 and colorectal cancer.26,27 The ALDH3A2 mutation at 
residue 266 from lysine to asparagine (K266N) causes an inherited 
neurocutaneous disorder known as Sjögren–Larsson syndrome.28 

ALDH4A1 protein with a mutation at residue 352 from serine to 
leucine (S352L) is correlated with hyperprolinemia type 2, an auto-
somal recessive disorder of proline metabolism.29 ALDH5A1 with 
a mutation at position 301 from lysine to glutamic acid (K301E) 
disrupts the normal degradation of gamma-hydroxybutyric acid, 
resulting in a rare metabolic disorder known as gamma-hydroxy-
butyric aciduria, which is characterized by a highly heterogene-
ous neurological phenotype ranging from mild to very severe.30 
Substitutions at position 535 from arginine to cysteine (R535C) 
or position 466 from glycine to arginine (G466R) in ALDH6A1 
are associated with demyelination and transient methylmalonic 
aciduria.31 Three mutations in ALDH7A1, which include leucine 
to proline at position 455 (L455P), glutamic acid to glutamine at 
position 427 (E427Q), and asparagine to leucine at position 301 
(N301I), are associated with pyridoxine-dependent epilepsy and 
folic acid-responsive seizures.31 The ALDH16A1 mutation from 
proline to arginine (P527R) causes gout and mast syndrome.32 
ALDH18A1 with a mutation from arginine to glutamine at position 
84 (R84Q) results in urea cycle defects characterized by hyperpro-
linemia, hypoornithinemia, hypocitrullinemia, hypoargininemia, 
and hyperammonemia.33

Furthermore, ALDH enzymes are involved in many vital physi-
ological processes. By binding to substrates for endobiotic and 
xenobiotic functions, they not only detoxify potentially hazardous 
aldehydes, but they also mediate antioxidant activities through di-
rect (glutathione-like) and indirect (generating NAD(P)H) actions. 
Some of them can transform vitamin A into retinoic acid and per-
form osmoregulatory functions. Moreover, ALDHs can also pro-
tect cells against lipid aldehydes in environments with high levels 
of oxidative stress. One negative implication of this protective 
activity is that it allows cancer stem cells or other tumor cells to 
escape drug toxicity, thus causing cancer resistance.

Cell-type expression patterns of ALDHs in the human adult 
liver
The liver consists of multiple types of cells. About 80% of liver 
cells are hepatocytes, which maintain the central liver functions of 
metabolism, biosynthesis, and detoxification. Bile ductular epithe-
lial cells are the other type of parenchymal cells in the liver, and 
they form bile ducts to carry out bile acid drainage. Vascular en-
dothelial cells lining the blood vessel walls form sinusoids. HSCs 
are typically vitamin A-storing cells in the space of Disse between 
the sinusoid and hepatic plates. The residual macrophage cells in 
the liver are known as Kupffer cells. They are located near the 
blood vessel walls in sinusoids as part of immune surveillance. 
Blood cells, including T cells, B cells, and erythroid cells, are also 
rich in the liver. To examine the expression patterns of ALDHs 
in human adult livers, we took advantage of the public database 
Human Protein Altas (https://www.proteinatlas.org) and extracted 
the single-cell expression data of all ALDHs except ALDH1A7 and 
ALDH3B2. Transcript profiling in this database was based on a 
combination of two transcriptomics datasets (Human Protein At-
las and Genotype-Tissue Expression) that correspond to a total of 
14,590 samples from 54 different human normal tissue types, ac-
cording to Fagerberg et al.34 As shown in Figure 1, hepatocytes 
are the main cellular source for 12 ALDH genes (ALDH1A1, ALD-
H1B1, ALDH2, ALDH1L1, ALDH9A1, ALDH8A1, ALDH5A1, 
ALDH6A1, ALDH3A1, ALDH3A2, ALDH7A1, and ALDH4A1). 
Although ALDH18A1 and ALDH9A1 are highly expressed in 
hepatocytes, these two genes were also detectable in almost all 
other cell types (B cells, erythroid cells, T cells, bile ductular epi-
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thelial cells, endothelial cells, Kupffer cells, and HSCs) in adult 
human livers. ALDH16A1 is another gene with wide expression 
across all cell types in the liver. However, B cells and Kupffer 
cells have relatively higher levels of ALDH16A1 than hepatocytes. 
Notably, some ALDHs are not expressed in hepatocytes. For ex-
ample, ALDH3B1 is predominantly found in Kupffer cells, while 
ALDH1A2 and ALDH1L2 only have been detected at low levels 
in B cells, and low levels of ALDH1A3 have been found in HSCs 
and bile endothelial progenitor cells. Such differential expression 
profiles indicate that hepatocytes utilize the majority of ALDHs, 
whereas other cell types may also use specific enzymes for unique 
needs during liver homeostasis.

ALDH expression patterns in relation to murine liver zonation
The mammalian liver consists of repeating hexagonally shaped 
lobules as functional units. As shown in Figure 2a, each liver lob-
ule consists of around 9–12 concentric layers of hepatocytes in 
mice.35,36 Liver zonation refers to the phenomenon of spatial and 
temporal segregation of hepatocytes according to their distinct 
functions in hepatic cords. Single-molecule fluorescence in-situ 
hybridization can provide sensitivity and dynamic ranges for pre-
cise measurement of the mRNA content of hepatocytes in mam-
malian livers.37 Combining this technique with single-cell RNA 
sequencing has revealed the entire transcriptome of thousands of 
mouse liver cells.36 In this genome-wide reconstruction of liver 
zonation, nine layers, starting from the central vein to the portal 
triads, have been designed to determine the global division of labor 
in the mammalian liver based on lobule coordinates and zonation 
landmark genes.36 Using this strategy, a probabilistic inference al-
gorithm has been developed to compute the likelihood that each 
cell belongs to any of these layers according to six landmark genes, 
including the pericentral genes Glul and Cyp2e19 and the peripor-
tal genes Ass110, Asl10, Alb8, and Cyp2f29.36 This reconstruction 
accuracy is strongly dependent on the extent of zonation of tested 
landmark genes and only weakly dependent on the intralayer cell-
to-cell variability. The precision of reconstructed zonation profiles 
has been validated using single-molecule fluorescence in-situ hy-
bridization on 20 genes with diverse profiles and has displayed an 
excellent overall correspondence between the predicted and meas-
ured profiles.36

The enzyme arginase 1 (Arg1) is involved in the urea cycle, 
which is a series of reactions that occur in liver cells near peri-

portal zones. The urea cycle processes excess nitrogen, which is 
generated when proteins and their building blocks (amino acids) 
are used by the body. The Glul gene product, glutamine synthetase, 
has opposite patterns that are exclusively located in the first one 
to two layers of pericentral hepatocytes compared to Arg1. Figure 
2b demonstrates the distribution of the periportal enzyme Arg1; 
the pericentral enzyme glutamine synthetase, which is encoded by 
Glul; and the perivascular cell marker smooth muscle actin in mu-
rine livers. The white dashed lines in Figure 2b indicate hexagon-
shaped lobules that are radially polarized to form liver zonation. 
Considering that key liver genes have been shown to be differen-
tially expressed in different layers of hepatocytes along the liver 
lobule axis, we examined the distribution of the Aldh gene in nor-
mal mouse adult livers using extracted data describing the detailed 
genome-wide reconstruction of the spatial division of hepatocytes 
in liver zonation.36 The Aldh gene levels were obtained from sup-
plementary table36 in the zonation matrix for spatial transcriptomics 
according to Halpern and illustrated by us in heatmaps as shown in 
Figure 2c–d. These heatmaps for Aldh genes were generated based 
on average values from layer 1 to layer 9 (Fig. 2c–d). We found 
six different patterns of these genes in the mouse liver zonation, 
whereas the Aldh18a1, Aldh1a2, Aldh1a3, Aldh3a1, and Aldh3b2 
genes were undetectable and were excluded in the analyses. The 
first pattern showed a peak increase in the pericentral zones. For 
example, the Aldh1a1 levels averaged 6.5584E−4 at layer 1 (near 
the pericentral zone) and 2.3445E−4 at layer 9 (near the periportal 
zone), showing a roughly 2.797-fold higher level in the pericentral 
zones than in the periportal zones for the Aldh1a1 gene. The aver-
age Aldh2 level was 2.1123E−3 at layer 1 and 1.0253E−3 at layer 
9, indicating a 2.06-fold higher level of Aldh2 expression in the 
pericentral zones versus the periportal zones. Aldh3a2 expression 
averaged about 1.1139E−3 at layer 1 and dropped to 4.2813E−05 
at layer 9, indicating a 26-fold higher level of Aldh3a2 expres-
sion in the pericentral zones than in the periportal zones. Aldh16a1 
had an average expression of about 8.9078E−05 at layer 1 and 
7.1063E−05 at layer 9, a 1.25-fold higher level in Aldh16a1 in the 
pericentral zones compared to the periportal zones.

The second pattern of ALDHs showed peak expression at the 
periportal zones. Aldh1b1 expression averaged about 3.78886E−06 
at layer 1 and 16685E−05 at layer 9, indicating a 24.19-fold in-
crease in the periportal zones compared to the pericentral zones. 
Aldh1a7 showed a 1.44-fold increase in the periportal zones com-
pared to the pericentral zones based on its average expression of 

Fig. 1. Expression patterns of ALDHs in cells within the human adult liver. Data were extracted based on the maximal transcripts per million (nTPM) for 
each cell type from the Human Protein Atlas (https://www.proteinatlas.org). ALDH, acetaldehyde dehydrogenase; EC, vascular endothelial cells; HSC, he-
patic stellate cell.
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about 5.91444E−05 at layer 1 and 8.52498E−05 at layer 9. Ald-
h9a1 had an average expression of about 1.6432E−4 at layer 1 
and 2.3246E−4 at layer 9, demonstrating a 1.415-fold periportal 
elevation. Lastly, Aldh1l1 roughly displayed a 1.66-fold periportal 
increase, with an average expression of about 5.93E−4 at layer 1 
and 9.8656E−4 at layer 9.

The third pattern exhibited peak expression in the middle zones 
with increased levels in the periportal zones. Aldh1l2 had the high-
est level in layer 3 (2.149E−07), which was 1150-fold higher than 
that at layer 1 and 4.28-fold higher than that at layer 9. The fourth 
pattern showed the lowest expression in the middle zones. Aldh6a1 
had the lowest expression (5.61E−05) in layer 3, which was about a 

1.43-fold reduction from layer 1 and a 1.30-fold decrease from layer 
9. The fifth pattern had peak expression in the middle zone. Aldh8a1 
expression averaged about 2.0291E−4 at layer 1 and 2.6596E−4 
at layer 9, with the peak average expression of about 2.933E−4 
found at layer 7. The sixth pattern revealed two expression peaks 
located in the middle zones. Aldh1l2 had the highest level in layer 
3 (2.149E−07), which was 1150-fold higher than that at layer 1 and 
4.28-fold higher than that at layer 9, and another peak expression 
was at layer 7 (1.18452E−07), which was 633.986-fold higher than 
that at layer 1 and 2.36-fold higher than that at layer 9.

Spatial sorting enables comprehensive characterization of liver 
zonation.38 Transcription dynamics in a physiological process in-

Fig. 2. Expression patterns of Aldhs in liver zonation. (a) A cartoon showing the hepatic architecture with layers of hepatic cords, central veins (CV), and 
portal triads (PT) that contain portal veins, hepatic arteries, and bile ducts. EC: vascular endothelial cells; HSC: hepatic stellate cells. (b) Overview of a liver 
lobule related to nine layers of hepatocytes in analyses of spatial transcriptomics according to Halpern et al.36 (c) The immunofluorescent staining detects 
periportal hepatocytes by the Arg1 antibody (green signal), pericentral hepatocytes by the glutamine synthetase (Gs) antibody (red signal), and large hepatic 
vasculatures by an alpha-smooth muscle actin antibody (yellow signal). The white dashed lines show areas of a liver lobule consisting of 6 PT in the periphery 
and one CV in the middle. Scar bar: 100 mm. (d) Six types of zonation patterns are found in Aldhs. (e) and (f) Immunohistochemistry showed pericentral 
patterns of Aldh1a1 protein in normal and damaged livers that were exposed to 5% ethanol/binge in chronic and acute liver injury. Magnification: 200×. 
ALDH, acetaldehyde dehydrogenase. 
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dicate that β-catenin signaling directs liver metabolic zonation.39 
ALDH3A1 expression is not detected in any layers, as indicated 
in supplementary table by Halpern,36 but overexpression of this 
gene has been reported in HCC with the Wnt/β-catenin pathway.40 
Considering that the Wnt/β-catenin pathway controls pericentral 
genes, this regulation of ALDH3A1 by Wnt/β-catenin suggests that 
this enzyme likely is induced by pericentral genes during HCC 
development. In addition, ALDH1A1 can be regulated by the Wnt/
β-catenin pathway.41 It is easy to speculate that the pericentral 
localization of this gene results from the regulation by the Wnt/
β-catenin pathway in normal mouse livers. Our recent data have 
demonstrated potential regulation of the mouse Aldh1a1 by Yes-
associated protein during alcohol-related hepatocyte damage.42 
Moreover, we found Aldh1a1 localization in the pericentral zones 
in normal mouse livers (Fig. 2e). When mice were exposed to a 
5% ethanol-containing Liber Dicarli liquid diet for 10 days fol-
lowed by a binge (5 mg/g body weight), according to Dr. Bin Gao’s 
National Institute on Alcohol Abuse and Alcoholism model,43 we 
observed increased staining of Aldh1a1 in the pericentral zones of 
the ethanol-damaged livers (Fig. 2f). It is conceivable that both the 
Yes-associated protein and Wnt/β-catenin pathways are involved 
in regulating Aldh1a1 during alcoholic liver disease.

ALDHs in HCC
HCC is the most frequently diagnosed type of liver cancer with a 
poor prognosis and no effective treatments. Surveillance Epidemi-

ology End Results have reported that HCC is the fastest-growing 
cause of cancer-related deaths in the United States since the early 
2000s.44,45 To understand the expression patterns of ALDHs in 
HCC, we extracted The Cancer Genome Atlas (TCGA) data and 
identified altered patterns of the ALDH genes. In the upregulated 
groups, we found a 1.16-fold upregulation of the ALDH1A1 gene 
in primary human HCC compared to normal healthy livers (Table 
1). This observation is consistent with previous reports about the 
identification of ALDH1 in metabolic and gene expression profiles 
that confer cytotoxicity in HepG2 liver cancer cells.46 ALDH1 ac-
tivity also has been identified in rabbit hepatic VX2 tumors.47 In 
addition, ALDH1A1 protein has been found to stabilize the tran-
scription factor GLI family zinc finger 2 (Gli2) and enhance the 
Hedgehog signaling in HCC.48 ALDH1A1 can also crosstalk with 
insulin growth factor binding protein 1 in liver metastasis from 
colorectal cancer.49 Overexpression of the ALDH1A1 gene has 
been observed to be in differentiated cells but not in cancer stem/
progenitor cells in HCC.50 High ALDH1A1 expression is associ-
ated with a 57-month recurrence-free survival in hepatitis B virus-
related HCC patients.5 Moreover, ALDH3A1 overexpression has 
been identified in HCC with the Wnt/β-catenin pathway.40 Consist-
ent with this report, we found a 2.8-fold increase in the ALDH3A1 
expression in HCC after analyzing the TCGA database (Table 1). 
ALDH18A1 is another member of metabolic pathways regulating 
HCC.51 The bifunctional ALDH18A1 gene controls the conversion 
of glutamate to glutamate 5-semialdehyde in the biosynthesis of 
proline, ornithine, and arginine. This metabolic axis can support 
HCC cell survival by modulating hypoxia-inducible factor 1-al-

Table 1.  Summary of ALDH expression in human primary hepatocellular carcinoma

ALDH type Median value 
Normal (n = 50)

Median value Primary 
HCC (n = 376)

Statistical significance (Nor-
mal versus Primary HCC)

Statistical significance of ALDH expression 
with poor prognosis and survival rates

ALDH1A1 464.669 539.403 Up, p = 6.103E−9a p = 0.54

ALDH1A2 0.502 0.407 Down, p = 2.623E−6a p = 0.12

ALDH1A3 1.436 0.488 p = 0.595 p = 0.26

ALDH1B1 78.77 39.793 Down, p = 1.639E−5a p = 0.039a

ALDH1L1 227.328 113.672 p = 0.943 p = 0.28

ALDH1L2 0.043 0.081 Up, p = 7.737E−11a p = 0.83

ALDH2 945.96 394.334 Down, p < 1E−12a p = 0.081

ALDH3A1 0.461 1.297 Up, p = 1.923E−6a p = 0.98

ALDH3A2 87.372 87.728 Up, p = 4.111E−6a p = 0.93

ALDH3B1 2.61 3.837 Up, p = 4.921E−13a p = 0.038a

ALDH3B2 0.004 0.015 Up, p = 0.030a p = 0.029a

ALDH4A1 198.159 118.372 Down, p = 7.924E−9a p = 0.74

ALDH5A1 34.68 25.422 Down, p = 0.0254a p = 0.049a

ALDH6A1 103.472 29.32 Down, p < 1E−12a p = 0.24

ALDH7A1 64.941 56.968 p = 0.0636 p = 0.041a

ALDH8A1 107.059 34.109 Down, p = 1.625E−12a p = 0.029a

ALDH9A1 86.37 67.501 p = 9.198E−4 p = 0.94

ALDH16A1 8.001 14.669 Up, p < 1E−12 a p = 0.59

ALDH18A1 14.497 19.143 Up, p = 1.624E−12a p = 0.0014a

aALDHs with statistical significance (p < 0.05). Data are from The Cancer Genome Atlas database (http://ualcan.path.uab.edu/analysis.html). ALDH, acetaldehyde dehydrogenase; 
HCC, hepatocellular carcinoma.
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pha stability in response to hypoxia.52 ALDH18A1 also has been 
identified as a metabolism-related gene in cholesterol-associated 
nonalcoholic steatohepatitis-HCCs in mice and humans.53 Further-
more, ALDH18A1 upregulation in liver cancer of both human and 
animal models is associated with the reprogramming of mitochon-
drial proline metabolism with pyrroline-5-carboxylate reductase as 
a potential mechanism of action for the proline pathway in cancer 
development.54 Reducing H3K18Ac and H3K27Ac levels at the 
promoter regions of amino acid metabolism and nucleotide synthe-
sis enzyme genes including ALDH18A1 have been found in Huh7 
liver cancer cells.55 In agreement with these reports, we found a 
1.32-fold increase in the ALDH18A1 gene in 372 primary HCCs 
from the TCGA database (Table 1). Patients with high levels of this 
gene exhibited decreased survival rates than those exhibiting lower 
levels (Table 1). These observations support the protumorigenic 
role of the ALDH18A1 gene in HCC development. Although ALD-
H1L2, ALDH3A2, ALDH3B1, ALDH3B2, and ALDH16A1 were 
upregulated in our analyses of the TCGA database (Table 1), there 
is no report in the literature about the involvement of these genes in 
HCC. Nevertheless, we found that ALDH3B1 and ALDH3B2 were 
not only upregulated but also associated with a poorer prognosis in 
HCC patients with high levels of these two genes (Table 1). These 
observations indicated undiscovered protumorigenic activities of 
ALDH3B1 and ALDH3B2 in the liver.

On the other hand, we identified downregulated groups in pri-
mary human HCC after analyzing the TCGA database. These down-
regulated genes included ALDH1A2, ALDH1B1, ALDH2, ALD-
H4A1, ALDH5A1, ALDH6A1, and ALDH8A1. Consistent with these 
observations, ALDH1A2 has been found to be downregulated in a 
pathway-guided computational framework to establish a metabolic 
signature with the capacity for HCC prognosis prediction.56 We ob-
served 1.233-fold downregulation of ALDH1A2 in primary human 
HCC compared to normal healthy livers after analyzing extracted 
data from the TCGA database (Table 1). ALDH1B1 with high ex-
pression has displayed protective roles for HCCs with multiple nod-
ules and high serum alpha-fetoprotein levels.5 The protective role 
of Aldh1b1 also has been shown to inhibit ethanol-induced hepa-
tocellular hyperproliferation and tumor development in rodents.57 
Consistent with these previous publications, we found a 1.98-fold 
downregulation of ALDH1B1 in primary human HCC (Table 1).

ALDH2 is a potential therapeutic target for liver disease.58 
This enzyme can alleviate alcoholic liver disease by preventing 
acetaldehyde exposure in the reduction of signal transducer and 
activator of transcription 1 methylation.59 It also inhibits oxida-
tive stress and mitochondrial dysfunction in nonalcoholic fatty 
liver disease.60 Moreover, ALDH2 activity can be antifibrotic 
and reduce collagen production by regulating NF-E2-related fac-
tor 2/antioxidant responsive element and NF-E2-related factor 2/
heme oxygenase-1 signaling pathways.61,62 However, the ALDH2 
gene is downregulated in many liver diseases. Decreased levels 
of ALDH2 have been shown to indicate a poor prognosis in HCC 
patients.63 ALDH2 deficiency also has been linked with a higher 
risk for the progression of alcohol-associated fibrosis to HCC.64 
Additionally, ALDH2 loss in hepatocytes has been shown to re-
lease copious amounts of oxidized mitochondrial DNAs through 
extracellular vehicles. Neighboring HCC cells can then take up 
the extracellular vehicles, containing acetaldehyde, and activate 
multiple oncogenic pathways that promote carcinogenesis after 
chronic exposure to alcohol and carbon tetrachloride.64 Another 
study suggests a negative correlation between the susceptibility 
to HCC and ALDH2 expression in an HCC-independent cohort.65 
A dose-dependent link exists between alcohol consumption over 
time and the risk of HCC individuals with the ALDH2*1/*2 or 

ALDH2*2/*2 genotype.66 Potential mechanisms by which ALDH2 
contributes to HCC advancement arise from the accumulation of 
acetaldehyde, which causes the increased activation of the AMP-
activated protein kinase pathway. Conversely, metastasis is also af-
fected by ALDH2, since modulating the AMP-activated protein ki-
nase pathway affects lipid metabolism and regulates tumor growth 
and survival.67 In agreement with these protective roles of ALDH2 
for the liver, we observed a 2.4-fold downregulation of this gene in 
primary HCC (Table 1). This downregulation supports the concept 
that loss of protective ALDH2 contributes to HCC development.

ALDH5A1 has been identified as one of eight genes in a prog-
nostic HCC model.68 We detected a 1.36-fold decrease in this 
gene in primary human HCC (Table 1). Both the ALDH2 and 
ALDH5A1 enzymes can oxidize 4-hydroxy-2-nonenal. The loss 
of ALDH5A1 implies that, like ALDH2, ALDH5A1 has a protec-
tive role in the liver, and its loss may contribute to liver damage 
during HCC development.

ALDH4A1 has been identified as glutamic gamma-semialde-
hyde dehydrogenase, and ALDH6A1 has altered levels in HCC. 
We detected 1.674-fold and 3.53-fold decreases of ALDH4A1 and 
ALDH6A1, respectively, in primary human HCC (Table 1), impli-
cating the loss of the protective roles of these two genes in HCC 
development. In agreement with this potential function, both genes 
have been demonstrated as potential molecular signatures for HCC 
through quantitative analysis of the mitochondrial proteome.69

ALDH8A1 is reported as one of eight genes associated with 
prognosis in a risk score assessment model of HCC patients.70 
We detected a 3.14-fold decrease in this gene in primary human 
HCC (Table 1). ALDH1L1 downregulation also has been reported 
in HCC tumors, and its decreased expression is associated with 
the poor prognosis of HCC patients.71 The ALDH1L1 variant 
rs2276724 and mRNA expression predict postoperative clinical 
outcomes and are associated with tumor protein p53 expression 
in hepatitis B virus-related HCC.72 Knockout of Aldh1l1 in mice 
has been demonstrated to reprogram metabolism, thus accelerat-
ing HCC.73 The ALDH1L1 promoter is extensively methylated in 
HCC.74 Additionally, hepatitis B virus-related HCC patients with 
high ALDH1L1 gene expression had a better clinical outcome. 
However, we did not observe any statistical significance in the 
ALDH1L1 gene between primary HCC and controls, although 
there was a 2-fold decrease of the ALDH1L1 gene in human HCC 
from the TCGA database (Table 1). In all of the decreased gene 
groups from the TCGA database, we found statistical significance 
of a poor prognosis for HCC patients who expressed decreased 
levels of ALDH1B1, ALDH5A1, ALDH7A1, and ALDH8A1 (Ta-
ble 1). These results suggest that the loss of expression of these 
genes in HCC patients was correlated with worse survival rates. 
Therefore, these genes can be considered promising diagnostic and 
prognostic markers as well as potential drug targets.

ALDHs and CCA
CCA is a type of liver cancer arising from the epithelium lining the 
intrahepatic or extrahepatic biliary ducts.75 Intrahepatic CCA is clas-
sified as peripheral tumors formed in the bile ducts inside the liver, 
and it accounts for less than 10% of annual CCA cases.76,77 Hilar or 
perihilar CCA occurs in the bile ducts just outside of the liver. Distal 
CCA is also extrahepatic and can arise in the portion of the bile duct 
nearest the small intestine. Despite different locations, ALDHs have 
been considered to be molecular markers of CCA stem cells.78,79 To 
determine whether there are any alterations of ALDHs in CCA, we 
compared the levels of these genes in CCA tumors after analyzing 
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the TCGA database from 36 CCA cases. As shown in Table 2, ALD-
H1A1, ALDH2, ALDH1L1, ALDH9A1, ALDH8A1, ALDH5A1, ALD-
H6A1, ALDH7A1, and ALDH4A1 were downregulated in primary 
CCA. Similarly, Wang et al. have found downregulation of ALD-
H1A1, ALDH3A2, ALDH4A1, ALDH6A1, and ALDH18A1; whereas 
ALDH3B1 and ALDH3B2 are highly induced in tumor tissues com-
pared with the peritumor tissues.80 Downregulation of the ALDH1A1 
and ALDH6A1 genes is common in CCA from both analyses based 
on the TCGA data and the study by Wang et al.80 The mechanism 
of ALDH1A1 downregulation is known to involve transcriptional 
regulation by histone H3K27 acetylation in CCA cells.80 Consistent 
with these reports, significant downregulation of ALDH1A1 (3.86-
fold decrease) was detected in primary human CCA compared with 
normal livers in the TCGA database (Table 2). Other discrepancies in 
the two analyses appear likely to be due to different sample sizes and 
controls, since Wang et al. used eight pairs of CCA samples and adja-
cent tissues, while TCGA has 36 CCA tumors in comparison to nine 
normal healthy control livers. Another possibility for the discrepancy 
may be due to the diversity of extrahepatic and intrahepatic CCAs in 
the TCGA database and the study by Wang et al.80 Considering that 
sample sizes are small in the TCGA database, we further searched the 
publicly available Gene Expression Omnibus dataset (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26566) that includes 
104 freshly frozen CCA tumor samples and 59 matched noncancer-
ous livers obtained from Australia, Europe, and the United States.81 
Significant downregulation of ALDH1A1, ALDH1B1, ALDH1L1, 
ALDH2, ALDH3A2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, 
ALDH8A1, and ALDH9A1 as well as upregulation of ALDH1A3, 

ALDH3B1, and ALDH16A1 were observed (Fig. 3).81 These observa-
tions were consistent with the findings from the TCGA data and the 
study by Wang et al.80

ALDH1A3 in CCA plays a vital role in the malignant behavior 
of CCA and may serve as a new therapeutic target.82 A positive 
correlation has been identified between the ALDH1A3 protein ex-
pression levels and the cell migration abilities of three CCA cell 
lines, which has been verified using ALDH1A3-overexpressing 
and ALDH1A3-knockdown clones.83 In addition, lactic acidosis 
has been shown to upregulate epidermal growth factor receptor 
and ALDH1A3 expression, leading to the aggressiveness of CCA 
cells.84 Given the fact that ALDH1A3 is protumorigenic, it is not 
surprising that this gene displayed a 3.58-fold upregulation in CCA 
(Table 2). We also found upregulation of the ALDH16A1 (3.83-
fold), ALDH1L2 (7.24-fold), ALDH3B1 (8.47-fold), ALDH3B2 
(46-fold), and ALDH18A1 genes (3.13-fold) in CCA tumors (Ta-
ble 2). ALDH8A1, as one of five hub genes, showed higher DNA 
methylation levels of the promoter in CCA compared with normal 
liver tissues and has been considered a potential DNA methylation 
biomarker and therapeutic target in CCA.85 ALDH3B2 belongs 
to the ALDH3 family of the ALDH superfamily.86 Mammalian 
ALDH3 genes (ALDH3A1, ALDH3A2, ALDH3B1, and ALDH3B2) 
encode enzymes of peroxidic and fatty aldehyde metabolism.87 
ALDH3B2 is found in the endoplasmic reticulum. Although its 
substrates are unknown, suppression of ALDH3B2 expression can 
inhibit the proliferation and clonogenic ability of CCA cells by in-
ducing G1-phase arrest.88–90 ALDH3B2 promotes the proliferation 
and invasion of CCA by increasing the expression of integrin beta1 

Table 2.  Summary of ALDH expression in human primary cholangiocarcinoma

ALDH type Median value 
Normal (n = 9)

Median value 
Primary CC (n = 36)

Statistical significance (Nor-
mal versus Primary CCA)

Statistical significance for ALDH expression 
with poor prognosis and survival rates

ALDH1A1 417.329 108.242 Down, p = 4.806E−6a p = 0.37

ALDH1A2 0.6 1.004 Up, p = 0.0487a p = 0.36

ALDH1A3 1.275 4.565 Up, p = 1.828E−4a p = 0.82

ALDH1B1 51.154 30.142 p = 0.09586 p = 0.2

ALDH1L1 263.865 6.489 Down, p = 2.1904E−04a p = 0.25

ALDH1L2 0.078 0.565 Up, p = 8.0222E−08a p = 0.62

ALDH2 1,027.483 122.616 Down, p = 6.883E−15a p = 0.28

ALDH3A1 0.517 0.603 p = 3.528E−01 p = 0.15

ALDH3A2 90.025 68.186 p = 2.155E−01 p = 0.27

ALDH3B1 2.728 23.116 Up, p = 3.751E−06a p = 0.85

ALDH3B2 0.011 0.508 Up, p = 1.816E−03a p = 0.012 (high level less survival)a

ALDH4A1 186.239 36.732 Down, p = 7.043E−10a p = 0.35

ALDH5A1 39.281 11.463 Down, p = 6.481E−12a p = 0.58

ALDH6A1 88.982 7.107 Down, p = 1.438E−12a p = 0.56

ALDH7A1 63.593 32.341 Down, p = 4.447E−04a p = 0.84

ALDH8A1 108.593 2.474 Down, p < 1E−12a p = 0.44

ALDH9A1 84.213 45.997 Down, p = 9.460E−03a p = 0.47

ALDH16A1 7.919 30.301 Up, p = 8.576E−12a p = 0.72

ALDH18A1 10.822 33.843 Up, p = 2.610E−10a p = 0.5

aALDHs with statistical significance (p < 0.05). The Cancer Genome Atlas dataset “Cholangiocarcinoma” was explored (http://ualcan.path.uab.edu/analysis.html). Data regarding 
the mRNA levels or relationship between patients’ survival rate were obtained to search the genes of interest. ALDH, acetaldehyde dehydrogenase; CCA, cholangiocarcinoma.
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and the phosphorylation levels of downstream c-Jun, ERK 1/2, 
and p38 MAPK. It has been demonstrated as a prognostic factor 
of CCA.91 Despite its undetectable levels in normal human livers 
(Fig. 1), ALDH3B2 overexpression is significantly associated with 
low survival rates in both HCC and CCA patients in our analyses 
of the TCGA database (Tables 1 and 2). Therefore, ALDH3B2 is an 
interesting oncogene worthy of further study.

Conclusions
The 19 detoxification ALDH genes exhibit differential spatial and 
temporal patterns in the liver. In normal conditions, human hepat-
ocytes express ALDH1A1, ALDH1B1, ALDH2, ALDH1L1, ALD-
H9A1, ALDH8A1, ALDH5A1, ALDH6A1, ALDH3A2, ALDH7A1, 
and ALDH4A1. Among them, ALDH3A2, ALDH1A1, ALDH16A1, 
ALDH5A1, ALDH4A1, and ALDH2 are predominately localized 
in the pericentral zones. In contrast, ALDH1B1, ALDH1A7, ALD-
H9A1, and ALDH1L1 are mainly expressed in the periportal zones. 
ALDH7A1 has two peaks in layer 2 and the periportal zone, respec-
tively. ALDH6A1 has peak levels at both the periportal and peri-
central areas. ALDH8A1 and ALDH1L2 have the lowest expression 
in both the periportal and pericentral zones, but ALDH8A1 has a 
peak in the middle zones, and ALDH1L2 has two peaks in the mid-
dle zones. Upregulation of ALDH16A1, ALDH1A1, ALDH1B1, 
ALDH1L2, ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2, and 
ALDH18A1 occur in HCC; whereas ALDH1A2, ALDH2, ALD-
H8A1, ALDH5A1, ALDH6A1, and ALDH4A1 are downregulated 
in HCC. Loss of ALDH8A1 and ALDH5A1 as well as upregulation 
of ALDH1B1, ALDH3B1, ALDH3B2, and ALDH18A1 are associ-
ated with a poor prognosis and low survival rates in HCC patients. 
Moreover, the upregulation of ALDH3B2 is associated with a poor 

prognosis and low survival rates in CCA patients. These altered 
expression patterns demonstrate the deregulation of ALDHs in 
the development of HCC and CCA. Whether there are additional 
changes of the deregulated ALDHs during liver injury and cancer 
development warrants further investigation. Further understand-
ing of ALDH genes in the liver, in particular their relation to liver 
zonation, may help us to develop more accurate and personalized 
strategies for the treatment of liver diseases such as HCC and CCA.
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